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Association Constants of 1 : 1 and 2 : 1 Molecular Complexes from 
Spectrophotometric Data; Experimental Design and Reliability of the 
Parameters 

Gin0 Carta and Guido Crisponi 
lstituto di Chimica Generale, lnorganica e Analitica, Universita di Cagliari, via Ospedale 72, 09 I00 Cagliari, 
Italy 

Principles for the design of an experiment for the determination of association constants (K,,K,) and 
molar extinction coefficients ( E , , E ~ )  for molecular complexes of 2: 1 stoicheiometry are discussed. The 
method employed is based on the maximization of the determinant of the information matrix IX'Xl and is 
of general validity. It is shown that the reliability of a parameter depends on two  independent factors: the 
available experimental apparatus and the experimental design (i.e. how the initial concentrations of the 
reagents are chosen). The correlations between parameters and to some extent the convergence of the 
routine of minimization are also dependent on the experimental design. 

During the last twenty years much attention has been devoted 
to the reliable determination of association constants for 
molecular complexes of 1 : 1 and 2 : 1 stoicheiometry. Complexes 
of the 1 :  1 type in particular have been studied by many 
authors '-lo and our knowledge about them is well defined, 
though not all the problems have been completely solved. It has 
not been clearly stated, for example, how to achieve optimal 
experimental design when experimental errors are statistically 
constant in absolute but not in relative v a l ~ e . ~ , ~  The situation 
for 2:  1-type complexes is somewhat worse: it is not known how 
to achieve optimal design even if relative experimental errors are 
kept constant, however, over the last fifteen years there have 
been helpful contributions from various authors.' '-' 

Lenkinski et al.,14 in particular, have proposed criteria for 
the best determination of each unknown parameter, and have 
suggested a sensible experimental approach. The difference 
curves of Maier and Drago l 7  are of particular interest from 
a practical point of view; these workers, as well as Lingane 
and Hugus,' ' paid particular attention to partial correlation 
coefficients between parameters, statistical indicators of prime 
importance in this kind of problem. 

In the present paper we describe a method, peculiar to the 
field of regression design," which can greatly improve para- 
meter reliability in the determination of association constants of 
2 : 1 molecular complexes from spectrophotometric data. For 
this purpose we assume the following conditions to be valid. 

(i) The interaction between the two reagents gives only 
molecular complexes of the 1 : 1 and 2: 1 types [equations (i) and 
(ii)], the absorption is only due to the species AB and A,B, 

A + B & A B  (i) AB + A & A,B (ii) 

(respective extinction coefficients c l  and E~), and Beer's law is 
valid; 

(ii) The solution acts ideally (i.e. each species has an an 
activity coefficient equal to unity, or stoicheiometric stability 
constants are considered); furthermore autoassociation of 
reagents and interaction between reagents and solvent are 
excluded. 

Though all these conditions are not always simultaneously 
and rigorously valid in real systems, they are perhaps not too 
restrictive, yet the conclusions and information drawn can be 
helpful in many situations, particularly where the determination 
of the parameters is difficult. 

Calculation and Reliability of Parameters.-Some of the data 
used in this work have been tested with a Fortran program 

based on the Gauss-Newton method as modified by 
Marq~ard t . ' ~  This version, in fact, works better than the 
orginal,,' especially with data from a poorly designed system 
(see later). The original Gauss-Newton method will now be 
outlined briefly, thus making it easier to understand the 
subsequent treatment. 

The values of the four parameters (Kl, K,, E ~ ,  E ,  or inter- 
changeably P , ,  P,, P,, P4) that best fit the assumed model can 
be obtained by minimizing the expression (l), where a, and bi 

are the initial concentrations of the two reagents A and B, y i  
and y ( a , b , P , ,  . . ., P,) are respectively the experimental and 
calculated absorbances for unit path length, wi is the weight of 
the ith point, and rn and N are the numbers of unknown para- 
meters and experimental points, respectively. 

The calculated absorbance y(a,b,P, , .  . ., P,) is given by the 
relation (2), where ui and u, are the concentrations of the species 

y(a,,b,P,, . . ., P,) = uicl + uic2 (2) 

AB and A,B and are defined by the equations (3) and (4) .  

K ,  = u/[(a - u - 2u)(b - u - u)] (3) 

K ,  = u/[(a - u - 2u)u) (4)  

The elimination of u between equations (3) and (4) gives 
equation (9, which can be solved analytically (or numerically 

(1 - 4K2/K1)K2U3 + (1 - 2bK2 - 4K2/K1)u2 + 
- [ a  + b + l /Kl + K,a(a - 2b)]u + ab = 0 ( 5 )  

by the Raphson-Newton method) and the value of u can be 
substituted in equation (4)  to obtain u. 

The substitution of equation (2)  in equation (1) would give 
an equation insoluble by the ordinary least-squares method, 
because although it is linear in c1 and E ,  it is not in K ,  and K,. 
However, in equation (1) by replacing y(ai,bi,Pl, . . ., P,) with 
the Taylor series truncated to the first term, we obtain 
equation (6), where yio is a shortened notation that stands for 

N m 

CHISQ = bi - yio - 2 (Syio/GPjAPj)]2wi (6)  
i =  1 j =  1 
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y(ai,bi,PlO,. . ., P,"), superscript zero indicates initial guessed 
values of the parameters, and APj = Pi - Pio is the correction 
term to be applied to Pjo. 

Equation (6) is linear in APj  and therefore if it is minimized 
with respect to each of these parameter increments, we finally 
obtain a set of four simultaneous equations (7) (Normal 
Equations). 

where 

and 

Equation (7) can be solved easily by standard methods and 
gives the increments to be applied to each parameter in order to 
obtain a better estimate. Generally, it is necessary to iterate the 
process until no change is observed in CHISQ or in the para- 
meters, the reason being that the problem can be considered 
approximately linear only near the minimum. 

Let us define a design matrix* X of order N x m [equation 
(8 ) ] .  Then equation (7)  can be written in more compact form as 

x = [Xjj] = [6yiO/6Pjwiq (8) 

(9), where the apex denotes the transpose of a matrix, and AP 

X'Ay = [X'X-JAP (9) 

and Ay are column vectors of the parameter increments 
Pi- Pio (of order m x 1) and of the differences (yi - yio)wif 
(of order N x l), respectively. 

From equations (7) and (9) we see that [X'X-J = C = [c jk] ,  
which is known as the information matrix, while the inverse 
[X'XJ-' = C1 = [cjk-'] is known as the dispersion matrix. 

The variance S; of thejth parameter, and hence its reliability, 
is given by equation (lo), where S 2  = CHIMIN/(N - m), 

sj2 = S2CjL' (10) 

N - m is the number of degrees of freedom of the estimate S 2 ,  
and CHIMIN is the minimum value of CHISQ. Generally, in 
non-linear cases, S 2  is not an unbiased estimate of the popul- 
ation variance a2 and should be obtained in an independent 
way, for example from repeated observations.2 Is However, it is 
possible to have a measure of the linearity of the system studied 
and therefore of the reliability 216 of S2.  

As can be seen in equation (lo), Sj2 is a function of two 
completely independent factors: S 2  and c,;'. The former (S2)  is 
a measure of the experimental error of the data and depends on 
the available experimental apparatus; the latter ( c , ~ ' )  instead 
depends on which initial concentrations of reagents A and B are 
chosen, and therefore on the experimental design. It is obvious 
that both S2 and cjL1 should be kept at their minimum values 
within experimental constraints. 

Another very important quantity for assessing the quality of 
the data is the multiple correlation coefficient R, (or to a lesser 
degree rjk, the partial correlation coefficient); Rj = [1 - 1/ 
(cj,cjyl)]* is a measure of how an error in P j  can be counter- 

* The derivatives have been calculated numerically using a computer 
with double precision arithmetic. The formula used was 

balanced by a variation in the other parameters, while rjk = 
C j & - l / ( C j y l C & k - ' ) f  is a measure of how an error in Pi can be 
compensated by a variation in P,., the effect of the other para- 
meters being eliminated. Both Rj2 and rjk2 can vary between 0 
and 1, and rjk2 d Rj2.  If Ri2 = 1, then the same set of N values 
of y(ai,bi,Pl,= -,P,) could be obtained for any Pi, 
compensating the variation in Pi with suitable values of the 
other parameters; in such a situation, an infinite number of Pj 
values would give the same CHIMIN and clearly Pi would be 
completely indeterminate. If Rj2 is only a little smaller than 1, 
then in the same way as before, large ranges of Pj  would give 
about the same CHIMIN and therefore Pi would be poorly 
determined. On the other hand if Rj2 = 0, then even a small 
change in Pi would give a well defined variation in CHIMIN, 
not open to compensation by the other parameters, and 
consequently Pi would be precisely determined. It is thus 
evident that a good design should keep values of Rj2 or r j k 2  as 
low as possible. 

Experimental Design.-In general an m-point design is 
sufficient for the determination of m unknown parameters in a 
functional relationship. Clearly in such a case S 2  should be 
estimated in an independent way. If wi = 1 then [x i j ]  = 
[6yi /6Pj] ,  as can be seen from relation (8) .  This means that in the 
m-dimensional space the j t h  co-ordinate (j = 1,m) of the ith 
point will be xij  = 6yio/6Pj, since 6y/SPj is the independent 
variable associated with the jt h parameter. 

If each of the m independent variables could vary in absolute 
value between 0 and 1, an excellent m-point design (orthogonal 
design) would be as shown in (1 1). This would amount to 

1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

picking out the first point (1 0 0 0), such that all its derivatives 
would be zero except the one with respect to K,. All the 
derivatives of the second point (0 1 0 0) should be equal to zero 
except the one with respect to K2, and so on for the third and 
fourth points. In such a situation each point would contribute to 
the determination of only one parameter: the first for K , ,  the 
second for K,, and so on. 

Both the information and the dispersion matrices in this case 
would be equal to the design matrix (11) and both Rj and rjk 
values would be zero, thus showing that the parameters would 
be determined each independently of one another. 

In practice, experiment (11) is unattainable because the 
independent variables are strictly correlated and cannot vary 
independently of one another. It is necessary, therefore, to look 
for some other approach. Probably the most used is based on a 
criterion 1 8 w 2 *  which maximizes the determinant of the inform- 
ation matrix IX'Y. In fact, designs which are optimal with 
respect to this criterion are always good from various points of 
view: they have in particular low variances for the parameters 
and low correlation coefficients. 

In general for non-linear problems it is not possible to have 
optimally designed experiments a priuri, because the entries in 
the design matrix [x i j ]  = [6yio/6Pj] depend on the parameters 
of the model, which are now known in advance. It is therefore 
necessary to follow a sequential approach, i.e. an iterative 
procedure where the information available at a particular stage 
(approximate estimates of parameters) is used to design the 
experiment and thus to obtain better estimates which will, in 
turn, allow a more adequate design.? 

t Once the estimates of the parameters are unchanging the points can be 
measured and added in small groups though each point must be found 
singly. 
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Table 1. The results of some simulated experiments, for the two types of designs considered 

K ,  K ,  cl1- ' /Kl2 c , , - ' / K , ~  
1 .o 1 .o 3.80 78.0 

1.69 25.6 
1.0 10.0 3.88 8.39 

1.62 3.88 
1 .o 0.1 3.80 7 020.0 

1.68 920.0 
1 .o 0.2501 3.80 1 088.0 

1.67 174.4 

C33-I/&i2 c44-1/E22 

3.41 19.4 
1.02 3.99 
3.43 0.886 
1.02 0.328 
3.42 2 150.0 
1.03 240.0 
3.42 319.0 
1.03 41.2 

R K 1 2  

0.985 
0.936 
0.984 
0.940 
0.985 
0.936 
0.985 
0.935 

R K 2 2  

0.9 12 
0.829 
0.863 
0.775 
0.969 
0.902 
0.958 
0.870 

R S 1 2  

0.985 
0.937 
0.980 
0.9 16 
0.986 
0.953 
0.986 
0.949 

R,22 
0.907 
0.831 
0.69 1 
0.513 
0.967 
0.93 1 
0.957 
0.904 

Design 

P 

P 

P 

P 

LX 

a 

U 

z 

Table 2. The least-squares ouput for each appropriate stage of the worked example (i.e. each time the design is updated) 

Kl K2 El E2 c11-l & < &  
n log a log b Absorbance I mol-' I mol-*l mol-' cm-'1 mol-' cm-' K12 K,' E2, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 

-4.00 0.0 
-4.00 -0.60 
-4.00 -1.00 
-4.00 -1.40 
-1.40 -4.00 
-1.00 -4.00 
-0.60 -4.00 

0.0 -4.00 
-2.20 - 1.80 
-2.80 -0.20 

0.0 -3.00 
- 1.0 -2.80 
-2.20 - 1.80 
-2.80 -0.20 
- 1.0 -2.80 

0.0 -3.00 

Det. 
CHIMIN x 

1 O6 
0.257 
0.225 
0.180 
0.120 
0.136 
0.223 
0.308 
0.393 20.13 2.96 2 696 4413 170 910 13 29 0.43 x 1C2* 0.12 
3.880 20.02 2.98 2 699 4409 18 700 10 25 0.32 x I@" 0.31 
3.964 20.00 2.98 2 700 4409 0.57 670 0.08 25 0.41 x 0.34 
3.925 20.00 2.99 2 700 4 401 0.55 530 0.08 6.3 0.39 x I@" 0.53 
3.518 20.00 3.00 2 700 4399 0.31 7.1 0.08 0.23 0.37 x lC" 0.55 
3.880 
3.964 
3.518 
3.925 20.00 3.00 2 700 4 399 0.16 3.6 0.04 0.11 0.59 x 0.55 

A sensible approach might consist of the following steps. 
(1) Select a starting design by collecting some points from 

Lenkinski's l4 titration curves 1 and 2 (titration curve 1 keeps 
the initial concentration a constant while varying 6, and 
titration curve 2 keeps b constant while varying a). 

(2) Use the available experimental points and a non-linear 
method of least squares (here the Gauss-Newton) to estimate 
the parameters and their variances. If the variances are 
sufficiently low stop the experiment, otherwise go to step (3). 

(3) Construct the design matrix [x,J = [Sy:/SPj] of order 
n x rn, making use of the n points already collected and of the M 
parameter estimates of the last least-squares run. Find the point 
of the region experimentally attainable that, added to [xijln ,,,, 
gives the matrix [xjj]("+ for which the determinant IX'A is 
a maximum. 

(4) Measure the absorbance corresponding to the new point 
and go to step (2). 

In Table 1 the results of some simulated experiments for two 
types of design and different sets of parameters are presented. 
The absorbances have a statistically constant relative error 
(i.e. wi = l/yi2) such that the weight of an observation does not 
depend too much on its particular value. The experimental 
points (22 for each experiment) have been chosen from a 7 x 16 
grid (- 3 < log a, log b < 0; Alog a = 0.2, Alog b = 0.5) of the 
region supposed experimentally attainable; e l  = c2 = 10 OOO 1 
mol-' cm-'. The type a design follows the conventional 
Lenkinski titration curves 1 (log a = -3, Alog b = 0.5) and 2 
(log b = -3, Alog a = 0.2); type f3 chooses the starting design 
(7 points) in the same way (log u = -3, Alog b = 1 and log 
b = -3, Alog a = 1) and then follows the procedure of 
maximizing the determinant of the actual information matrix, as 
previously described. In all cases the values of the relative 
variances (apart from S2)  c,;'/P,' and square multiple 
correlation coefficients R,* are better for type f3 than for type a 

I 

designs and the difference between them increases as the 
indeterminability of the system increases. 

The points for both a and /3 type designs, and K ,  = K ,  = 1 
1 mol-', are shown in the Figure. 

Worked Exampfe.-In order to illustrate better the proposed 
scheme an example from the literature will be re-worked. The 
species A and B are hexamethylbenzene and fluoranil respec- 
tively, and the solvent is carbon tetrachloride; the values of K, 
and K, are 20.00 and 3.00 1 mol-'; those of E ,  and E* are 2 700 
and 4 400 cm-' 1 mol-', respectively. In the (log a, log b) plane a 

0.2) is made. The points in the grid that have an absorbance 
between 0.1 and 4.0 units (cell of unit path length) are experi- 
mentally attainable and are here indicated as candidates. 

The first 8 simulated experimental points (starting design) are 
collected according to the titration curves 1 and 2 of Lenkinski, 
keeping the initial concentration of the species B constant and 
varying those of the species A, and then vice versa. In the next 
step the parameters and all the other quantities listed in Tables 2 
and 3 are calculated, by the Fortran program GAUSS, based on 
the Gauss-Newton method as modified by Marq~ardt . '~  An 

21 x 21 grid (-4.0 < log a, log b Q 0.0; Alog u = Alog b = 

* Absorbances could rigorously have a constant relative error if they 
were all recorded at the same value (one for simplicity) by means of cells 
with variable path length L,; if y(ai,b,P1, . . ., P,) is the true value of 
absorbance for unit path length then Li = l/y(ui,bi,P1,. . ., P,) 1: l/y, 
= wf, and therefore w, = l/yi2. In such a case [ X J  = [Syio/SP,(l/yi)] 
and should also be (c xi;)* 1: 1 for all points ( ie .  in the m- 

dimensional space of the measurements, all points should lie in a 
hypersphere of units radius), as in problems linear in the parameters, 
because each point should count equally. This condition, however, is 
not complied with, 

m 

j =  1 
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-1 

Q 

a 
0 
d 

-2  

-3 

Table 3. The partial correlation coefficients r(J,K) and the square multiple correlation coefficients Rj2,  for each appropriate stage of the worked 
example 

- 

- 

- 

n W I J Q  r(KIF1) T(K1rEZ) r(KZIE1) T ( K 2 , E Z )  T(E1rEZ) R K  ,z R K I Z  R c , Z  RrzZ 
8 - 0.42 -0.73 0.37 0.07 -0.85 -0.18 0.70 0.80 0.65 0.76 
9 - 0.09 - 0.99 0.09 - 0.20 -0.83 - 0.008 0.99 0.85 0.99 0.73 

10 - 0.67 -0.64 0.50 0.13 - 0.84 -0.1 1 0.77 0.84 0.59 0.73 
1 1  - 0.66 - 0.64 0.67 0.12 - 0.99 -0.14 0.76 0.99 0.59 0.99 
12 -0.16 -0.74 0.18 -0.16 -0.78 -0.015 0.64 0.69 0.65 0.63 
16 -0.16 -0.74 0.18 -0.16 -0.78 -0.014 0.64 0.69 0.65 0.63 

O t  (a 
0 

rn 

0 

0 

0 

8 0 0 0 0 ~ 0 0 0 0 ~ 0 0 ~ 0 L  

I I I 1 I 
-3 -2  - 1  0 

log a 

Figure. The points used in the case K, = K2 = 1 (I mol-') for both type 
a (0) and type f3 design ( x ) in the plane (log u, log b). The numerals 
adjacent to some points indicate how many times the point is used in 
design 

estimate of the parameters being available, it is now possible to 
choose the point that, added to the experimental points already 
collected, gives a maximum value to the determinant 1x4. 

This can be done in two different but equivalent ways. The 
first method adds each candidate, one at a time, to the current 
design matrix [xijJ,, ,,,, and then calculates the determinant of 
the resulting information matrix 1x4, [xijJ being now of order 
(n + I)  x rn. In this way as many determinants as there are 
candidates must be calculated. The point giving the maximum 
value of 1x4 is the one to be experimentally determined and so 
actually added to the design. 

The second method calculates the dispersion (or variance- 
convariance) matrix [XXJ-' of the current design [xijJ,, ,,, and 
with this matrix * it estimates the variance of each candidate; the 
point having the maximum variance will be chosen and there- 
fore experimentally measured. We have opted for this second 
method, making use of a Fortran program named CVAR, 
which, of course, must have as input the parameter estimates of 
the last least-squares run from which to calculate the derivatives 
of [Xij-J = [syio/sPjJ.  

The least-squares run performed on the first 8 experimental 
points (i.e. the starting design) gives the output listed in Tables 2 
and 3 corresponding to the rows having n = 8. The addition of 
the four subsequent points (by means of the program CVAR) 
causes each time a dramatic change in at least one value of 
c j y ' / P j 2 ,  as can be seen in Table 2. When n is 12 the parameters 
are already absolutely constant and the relative variances (apart 
from S2)  have decreased by a factor greater than 250. The last 
four points which are added simultaneously (though chosen 
singly; this is possible because the parameters are already stable) 
cause only a moderate improvement in the relative variances; 
thus the experiment is terminated. 

In Table 3 the values of the square multiple correlation 
coefficients Rj2 and of the partial correlation coefficients r(J, K) 
for each least-squares calculation are presented. Both r(J, K )  
and R; values at first vary erratically, but once the first foul 
points are added, they generally show a decrease; they remain 
unchanged in two cases, and r (K2,  E ~ )  increases though its 
value is still very low. The replication of the last four points has 
no effect on the correlation coefficients. 

Conclusions.-The approach outlined, if carefully used, will 
extract from the system all the available information, within 
the experimental constraints. It is of general validity, so that it 
can be applied to complexes of whatever stoicheiometry; in 
particular it can be used for the 1 : 1 case and for n.m.r. data. Its 
utility is more evident in cases where some parameters are 
highly correlated; in fact the maximum determinant method will 
automatically choose those point, in the region of operability, 
which contribute most to a precise determination of these 
parameters. 

In order to take full advantage of the potential of the method 
it is helpful to make a close-mesh grid of the whole region of 
operability in the (log a, log b) plane; in difficult cases, valuable 
information is found as to where to locate and possibly enlarge 
(for example by resorting to cells of different lengths) the area 
which is most important for parameter determination. 

A square partial correlation coefficient rjkz z 1 implies that 
in the (Pj,Pk) plane (or in the Pi axis for Rj2 2: 1) curves can 
be drawn of about the same value of CHIMIN, because the 
parameters can compensate one another to a great extent; it is 
evident that in such a situation, especially with data having a 
large experimental error, even the best computer program is 
likely to fail to converge. Thus it is manifest that program 
convergence, parameter reliability, and parameter correlation 
are all different aspects of the same problem and in some way 
dependent on the experimental design, a change in which can 
therefore markedly improve them. 

~~~~ ~ ~ 

* The point in the region of operability which maximizes IX'A is the one 
which has the maximum variance.2f A point i of co-ordinates xij = 
tiyio/SP,wi* with j = 1.m (i.e. the column vector Zi) has variance 
varLy(u,,b,,P,, . . ., Pd] = Zi' [ X ' f l - ' Z ,  which is easily computed. In 
order to find this new point to add to the design it is then sufficient to 
calculate the variance of a list of possible points representative of the 
whole region experimentally attainable. 
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